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Introduction

Neural networks: why so difficult to analyse?

Simplification as a solution

Probability distribution over the weights of the
model

Based on the work of Letarte et al.[1]

[1] Gaël Letarte, Pascal Germain, Benjamin Guedj, and François
Laviolette. Dichotomize and generalize: PAC-Bayesian binary
activated deep neural networks. NeurIPS, 2019.
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Introduction

PAC-Bayesian theory

Non-trivial generalization bound

Contributions

Get rid of an approximation
Constant-time prediction relative to network depth
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Preliminary notions
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Background and notation

Neural networks

Fully connected networks

Binary classification tasks

F (x) = (L1 ◦ · · · ◦ Ll)(x)
Lk(x) = gk(Wkx+ bk) ∀k ∈ {1, . . . , l}
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Binary activation

Why?

Computation time savings

Gains in memory required

Networks less prone to
overfitting [1] [2]

[1] J. Lin, C. Gan, and S. Han, ”Defensive quantization: When efficiency meets robustness”. CoRR, 2019
[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ”Binarized neural networks: Training
deep neural networks with weights and activations constrained to +1 or -1”. NIPS, 2016.

Benjamin Leblanc (UL) CANAI 2023 June 6th, 2023 7 / 23



Binary activation

Why?

Computation time savings

Gains in memory required

Networks less prone to
overfitting [1] [2]

[1] J. Lin, C. Gan, and S. Han, ”Defensive quantization: When efficiency meets robustness”. CoRR, 2019
[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ”Binarized neural networks: Training
deep neural networks with weights and activations constrained to +1 or -1”. NIPS, 2016.

Benjamin Leblanc (UL) CANAI 2023 June 6th, 2023 7 / 23



Binary activation

Why?

Computation time savings

Gains in memory required

Networks less prone to
overfitting [1] [2]

[1] J. Lin, C. Gan, and S. Han, ”Defensive quantization: When efficiency meets robustness”. CoRR, 2019
[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ”Binarized neural networks: Training
deep neural networks with weights and activations constrained to +1 or -1”. NIPS, 2016.

Benjamin Leblanc (UL) CANAI 2023 June 6th, 2023 7 / 23



Binary activation

Why?

Computation time savings

Gains in memory required

Networks less prone to
overfitting [1] [2]

[1] J. Lin, C. Gan, and S. Han, ”Defensive quantization: When efficiency meets robustness”. CoRR, 2019
[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ”Binarized neural networks: Training
deep neural networks with weights and activations constrained to +1 or -1”. NIPS, 2016.

Benjamin Leblanc (UL) CANAI 2023 June 6th, 2023 7 / 23



Binary activations - A study

Dissecting binary activated neural networks

Definition : The parts of a binary activated networks

The first part is L1

The second part is (L2 ◦ · · · ◦ Ll)
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Binary activations - A visualization
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Binary activations - A study

Dissecting binary activated neural networks

Definition : The parts of a binary activated networks

The first part (L1)

assigns a group to a given example

The second part (L2 ◦ · · · ◦ Ll)

assigns a prediction to each group

We have L1 : X → {−1,+1}d1 and (L2 ◦ · · · ◦ Ll) : {−1,+1}d1 → Y
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Neural networks aggregation
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Neural networks aggregation

Bayesian aspect

We suppose the weights B = ⟨Wk⟩lk=1 to follow a Gaussian probability distribution, centred
on B and with isotropic covariance matrix.

The output of a neuron

The expected output of a sign function
applied Gaussian distributed variable:

E
v∼N (w,I)

sgn(v · a) = erf

(
w · a√
2||a||

)
,

where erf(x) = 2√
π

∫ x
0 e−t2dt is the gaussian

error function.
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Neural networks aggregation

Probability of observing a given output for a given neuron

The binary activation acts as a Bernoulli distribution. P (si ∈ {−1,+1}) is given by

Pr(Lk;i (a) = s) =
1

2
+

s

2
erf

(
wk,i · a√
2∥a∥

)
, i ∈ {1, . . . , dk}, k ∈ {1, . . . , l}.

Probability of observing a given output for a given layer

Let Pr((L1 ◦ · · · ◦ Lk) (a) = s) = Ls1,k(a). An iterative computation can be used:

Pr(Ls
1,k(a)) =


∏d1

i=1 Pr(L
si
1,i (a)) si k = 1,∑

s̄

Pr(Ls
1,k(a) | Ls

1,k−1(a)) Pr(L
s
1,k−1(a)) sinon.
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Neural networks aggregation

The exact computation of ABNet

Dynamic programming approach

First layer: P1(x) =

[
Pr(Ls1(a))

]
s∈R1

Subsequent layers: Pk =
[
Pr(Ls1,k−1(a))

]
s∈Rk

= Ψk · Pk−1 ,

with Ψk =

[
Pr(Ls1,k(a) | Ls1,k−1(a))

]
s∈Rk ,̄s∈Rk−1
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Neural networks aggregation

Input layer

Leading hidden layer

Hidden layer

Hidden layer

Output layer

(a) A typical neural network

. . .

(b) The architecture of ABNet,
with underlying network from (a).
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Neural networks aggregation

Compact ABNet

Pr(Ls1,l(a))=s · (Ψl(Ψl−1(. . .Ψ3(Ψ2P1(x)) . . . )))

= s ·Ψl ·Ψl−1 · ... ·Ψ3 ·Ψ2︸ ︷︷ ︸
Hs

· P1(x))
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Neural networks aggregation

Input layer

Leading hidden layer

Hidden layer

Hidden layer

Output layer

(a) A typical neural network.

. . .

(b) The architecture of ABNet,
with underlying architecture from
(a).

(c) The structure of compact
ABNet, obtain from the network
presented in (b).
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Experimentations
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ABNet - a pratical case

(a) For different values of x, the probability of obtaining a certain representation as an output of the first
hidden layer, obtained with P1(x), multiplied by H.

(b) The output of the
aggregation Pr(L1,l).

(c) ABNet as a classifier. (d) Unique network, centered on
the a posteriori means of the
Gaussian probability distribution.
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Experimentations

Figure: Impact of the depth for PBGNet (dotted) and ABNet (continuous) on the test error and the
bound value depending on the width of the network on mnistLH. 5 random seeds.
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Experimentations

Dataset Model L−1 d Bound ErrorS ErrorT

ads

PBGNet 3 2 0.192 ± 0.004 0.140 ± 0.004 0.141 ± 0.012
ABNet 3 2 0.192 ± 0.004 0.140 ± 0.004 0.141 ± 0.012
PBGNetℓ 3 4 1.000 ± 0.001 0.018 ± 0.005 0.026 ± 0.004
ABNetℓ 3 4 0.887 ± 0.064 0.015 ± 0.003 0.026 ± 0.003
EBP 2 2 – 0.003 ± 0.002 0.040 ± 0.008
BC 1 4 – 0.025 ± 0.005 0.031 ± 0.004
BNN 1 8 – 0.037 ± 0.002 0.038 ± 0.004

mnistLH

PBGNet 1 8 0.186 ± 0.028 0.091 ± 0.037 0.092 ± 0.036
ABNet 3 4 0.162 ± 0.001 0.056 ± 0.001 0.058 ± 0.002
PBGNetℓ 3 8 1.000 ± 0.000 0.018 ± 0.003 0.038 ± 0.002
ABNetℓ 2 8 0.998 ± 0.003 0.025 ± 0.008 0.042 ± 0.006
EBP 3 8 – 0.016 ± 0.002 0.043 ± 0.002
BC 2 8 – 0.023 ± 0.002 0.035 ± 0.001
BNN 1 2 – 0.123 ± 0.005 0.133 ± 0.004
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Questions / comments
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Thank you for listening :) !
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