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Introduction - Interpretability

We define the degree of interpretability

of a predictor by the capacity of a non-expert to
understand its decision process solely by considering the model in itself.
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Introduction - Interpretability

What seem to be the key points of an
interpretable model?

Additive model

Simple interactions between features

Simple feature manipulations

Small amount of features

ŷ =70$ +

90¢ × number of square foot +

58$× number of rooms
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ŷ =70$ +

90¢ × number of square foot +

58$× number of rooms

Benjamin Leblanc (UL) IJCAI 2023 Workshop on XAI August 31st, 2023 4 / 15



Introduction - Interpretability

What seem to be the key points of an
interpretable model?

Additive model

Simple interactions between features

Simple feature manipulations

Small amount of features
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Introduction - Neural networks

Neural networks

Here : fully connected neural networks

B(x) = (Ll ◦ · · · ◦ L1)(x) = Ll(. . . L2( L1(x) ) . . . )

Lk(x) = gk(Wkx) ∀k ∈ {1, . . . , l}
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Introduction - Binary Activated Neural networks (BANNs)

Why binary activated
neural networks (BANNs)?

Savings on computing time

Predictors are less prone to
overfitting [1-2]

Interpretability possibilities
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Seeking Interpretability in Binary Activated Neural Networks

Simple neural networks

Binary activations (threshold)

1{x} =

{
1 if x ≥ 0,

0 otherwise.

Shallow networks (1 hidden layer)

Narrow networks

Sparse (2)
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Building the networks: BGN

Characteristics

For tackling regression tasks

Greedy algorithm (inspired from
Adaboost)

Convergence guarantees on the train
mean squared error

No fixed architecture

Uses a L1 norm regularization

No hyperparameter (learning rate, batch
size, ...)
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Explaining the networks: SHAP values

SHAP values

Goal: quantifying the contribution (magnitude,
impact) of each feature to a prediction

At a prediction or a dataset level of aggregation
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Explaining the networks: 1-BANN SHAP

Algorithm 1-BANN SHAP

1: Input : {x1, . . . , xm}, x ∈ Rd , the features of dataset
2: B, a BANN; {W1, . . . ,Wl}, its weights
3: R = 0d×d×|L1|
4: C = 01×d

5: For g ∈ {1, . . . , |L1|} :
6: a = 1{wg ̸=0}
7: C = C ∪ comb(a)
8: For i ∈ {1, . . . , d} such that (∃j | cj,i = 1):
9: For j ∈ {1, . . . , |C|} such that cj,i = 1 :
10: For x, x′ ∈ S :

11: If L1

(
xc\{f } ∪ x′

c\{f }

)
̸= L1(xc ∪ x′c) :

12: ri,|cj,i |1 = ri,|cj,i |1 +
θx,f
m

⊙
∣∣∣∑dl

k=1 wk

∣∣∣,
13: with θx,f =

∣∣∣L1

(
xc\{f } ∪ x′

c\{f }

)
− L1(xc ∪ x′c))

∣∣∣
14: Return R
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Testing our interpretable approach

The task

Task: predict the cost of a house
(measured in 100k USD)

Retained features (out of eight):

The median age of a house within a
block (MedAge)

The total number of bedrooms within
a block (TotalBed)
The median income for households
within a block (measured in 1k USD)
(MedInc)
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Conclusion

Artificial neural networks can be interpretable predictors...

... When trained with such a goal in mind!
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Thank you for your attention :)
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