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Introduction - Interpretability

We define the degree of interpretability of a predictor by the capacity of a non-expert to
understand its decision process solely by considering the model in itself.
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What seem to be the key points of an § =70% +
lnterpretable model? 90¢ X number of square foot +

58% x number of rooms

Location: Montcalm

Number of rooms > 3 Heated + lighted
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58% X number of rooms
o Additive model
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What seem to be the key points of an § =70% +
lnterpretable model? 90¢ X number of square foot +

58% X number of rooms
Additive model
Simple interactions between features

Simple feature manipulations

Small amount of features
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Introduction - Neural networks

Neural networks

@ Here : fully connected neural networks

@ B(x)=(Ljo---oLy)(x)=L(-..La( Ly(x))...)
o Li(x) = gu(Wix) Yk € {1,...,1}
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Introduction - Neural networks

Q) &.
N

Neural networks (Lo o L1)(x) )
@ Here : fully connected neural networks %QMQ\
o B(x) = (Lio--0Li)(x) = il La( La(x) ) .. ro iy LYV

o Li(x) = gu(Wix) Yk € {1,...,1}
\

4
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Why binary activated
neural networks (BANNs)?

Various activation functions on [-3,3]
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Introduction - Binary Activated Neural networks (BANNSs)

Why binary activated
neural networks (BANNs)?

Various activation functions on [-3,3]

@ Savings on computing time ) .s 1 une .

glx)

@ Predictors are less prone to

overfitting [1-2] . /

o Interpretability possibilities = = = : ! : :
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Seeking Interpretability in Binary Activated Neural Networks

Simple neural networks

. . 1
@ Binary activations (threshold) / N
. N \\\
L 1 ifx>0, ~. / '\*\\ N\
3= i Y S
0 otherwise. \\\/ D )‘
;:<\ \\ /
e 4
N\ !

N %
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Seeking Interpretability in Binary Activated Neural Networks

Simple neural networks

. . 1
@ Binary activations (threshold) / <N
/, p ]]_ \\
1 If X 2 0 s \\\ // ,\x\\\\\\
Lig = : X RN
0 otherwise. SVAN )‘
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@ Shallow networks (1 hidden layer) N /
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Simple neural networks

. . 1
@ Binary activations (threshold) / <N
/, p ]]_ \\
1 If X 2 0 s \\\ // ,\x\\\\\\
Log = . Y AN
0 otherwise. SVAN )‘
MO -~/
A 6 T
@ Shallow networks (1 hidden layer) N /
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Seeking Interpretability in Binary Activated Neural Networks

Simple neural networks

. . 1
@ Binary activations (threshold) / <N
/, p ]]_ \\
1 If X 2 0 s \\\ // ,\x\\\\\\
Loy = i X N\
0 otherwise. - /@ )‘
NN A
// \\ \\\ ]]- v s //
@ Shallow networks (1 hidden layer) N\ /
\ ) /
@ Narrow networks Y Y4

@ Sparse (2)
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Building the networks: BGN

Characteristics

For tackling regression tasks
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Convergence guarantees on the train
mean squared error
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@ No fixed architecture
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Building the networks: BGN

Characteristics

o For tackling regression tasks

e Greedy algorithm (inspired from
Adaboost)

@ Convergence guarantees on the train
mean squared error

[oNoNeNeNeXe]

@ No fixed architecture
@ Uses a L1 norm regularization

@ No hyperparameter (learning rate, batch
size, ...)
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Explaining the networks: SHAP values

SHAP values
T#3
#4
e Goal: quantifying the contribution (magnitude, o —
. . s v o —
impact) of each feature to a prediction o
v 13 .
@ At a prediction or a dataset level of aggregation -
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Explaining the networks: 1-BANN SHAP

Algorithm 1-BANN SHAP

1: Input : {x1,...,Xm}, x € RY the features of dataset
2: B, a BANN; {Wy,...,W,}, its weights
3: R=0gxdx|1y

4. C = 01><d

5: For g e {1,...,|L]}:

6:  a= w0}

7: €= CUcomb(a)

8: For i€ {1,...,d} such that (3j | ¢;,; = 1):

9: For j € {1,...,|C|} such that ¢;,; =1:
10: For x,x' € S :
11: If Ly (Xc\{f} ch\{f}) # Li(xc UXE) :
12: Vil il = Vil T )r(r;f © ‘ZZ’:l Wk"
13: with 9,( f= ’Ll (Xc\{f} U Xc\{f}) L1(Xc U X/E))’
14: Return R
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The task
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(measured in 100k USD)
@ Retained features (out of eight):
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Testing our interpretable approach

The task

@ Task: predict the cost of a house
(measured in 100k USD)
@ Retained features (out of eight):
e The median age of a house within a
block (MedAge)
e The total number of bedrooms within
a block (TotalBed)
e The median income for households
within a block (measured in 1k USD)
(Medlnc)
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Testing our interpretable approach

The task
@ Task: predict the cost of a house B(Medinc, MedAge, TotalBed) =
(measured in 100k USD) 1.00 &
@ Retained features (out of eight):
1.27-1 ) +
e The median age of a house within a {0.08 TotalBed-+ Medinc>65.46}
block (MedAge) 1.01- ]l{O.59~TotaIBed+Med|nc>63.56}+
o The total number of bedrooms within 0.60-1 +
a block (TotalBed) {Medinc>28.20}
o The median income for households 0.36 - 1{TotalBed>622.0} T
within a block (measured in 1k USD) 027 -1
(Medinc) {MedAge>20.0}
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Testing our interpretable approach

The criterion

o Additive model

@ Simple interactions between features

@ Simple feature manipulations

@ Small amount of features

B(Medinc, MedAge, TotalBed) =
1.00 +

1.27.
1.01-
0.60 -
0.36 -
0.27 -

]l{0.08~T0taIBed+Med|nc>65.46} +
110.59.TotalBed+Medinc>63.56} +
LtMedinc>28.201 +
LiTotalBed>622.0} +

1 {MedAge>20.0}
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Testing our interpretable approach

B(Medinc, MedAge, TotalBed)
1.00 +

1.27 - ]l{0.08~TotaIBed+Med|nc>65.46} +

1.01 - 110.59.TotalBed+Medinc>63.56} +

0.60 - T{Medinc>28.20} T
0.36 - I{TotalBed>622.0} +

0.27 + 1{MedAge>20.0}
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Testing our interpretable approach

B(Medinc, MedAge, TotalBed)
1.00 +

1.01- ]l{O.59~TotaIBed+Med|nc>63.56}+

1.27 - 110.08-TotalBed+MedInc>65.46} +

0.60 - T{Medinc>28.20} T
0.27 - T{MedAge>20.0} T

0.36 - L{TotalBed>622.0}
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Testing our interpretable approach

B(Medlnc, MedAge, TotaIBed) =
1.00 +

1.01 - 10.59.TotalBed+MedInc>63.56} T
1.27 - 140.08-TotalBed+ Medinc>65.46} T

0.60 - I{Medinc>28.20} T

0.27 - I{MedAge>20.0}+

\ / \
Samples = 1192|  [samples = 518]  [samples =
Valle = 3.046 | | value = 3678 | | value = 4.

0.36 - L{TotalBed>622.0}
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Conclusion

Artificial neural networks can be interpretable predictors...
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Conclusion

Artificial neural networks can be interpretable predictors...
... When trained with such a goal in mind!
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Thank you for your attention :)
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